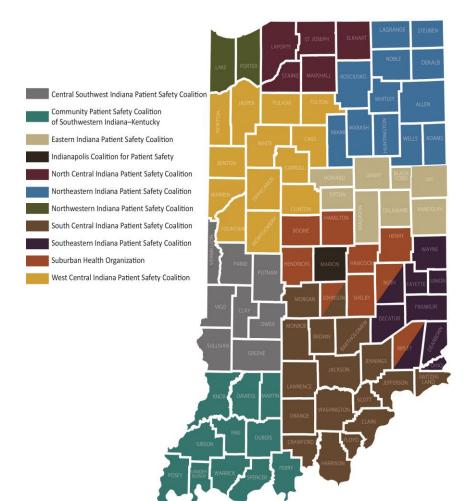


of the Indiana Hospital Association


# Sepsis Awareness Month Advances in Fluid Management

Sept 29, 2022

IHAconnect.org/Quality-Patient-Safety

# Our Mission





#### Advancing Health in Indiana

- Engage and inspire health care providers
- Create safe cultures
- Create reliable systems of care
- Prevent patient harm in Indiana

#### **PREVENT PATIENT HARM**

To create high reliability organizations who collaborate and engage in continuous improvement to achieve best in class outcomes

#### **IMPROVE COMMUNITY HEALTH**

To partner with communities and stakeholders to develop, plan, and coordinate initiatives that span the prevention and care continuum

#### INCREASE PATIENT AND FAMILY ENGAGEMENT

To engage patients and families in all aspects of their care and seek their input and inclusion in advisory capacities throughout organizations

#### LEAD A CULTURE OF SAFETY

To create an environment of mutual trust, respect, and transparency among organizations, patients, and families

#### IHAconnect.org/Quality-Patient-Safety

# Sepsis: Back and to the Future



| IHA 2022 Sepsis Awareness Month Webinars |           |                                            |  |  |  |  |  |  |
|------------------------------------------|-----------|--------------------------------------------|--|--|--|--|--|--|
| 1-Sept.                                  | 3 p.m. ET | Indiana Sepsis State of the State          |  |  |  |  |  |  |
| 8-Sept.                                  | 3 p.m. ET | Sepsis Pathophysiology & Bundle Compliance |  |  |  |  |  |  |
| 15-Sept.                                 | 3 p.m. ET | Sepsis Diagnostic Advances                 |  |  |  |  |  |  |
| 22-Sept.                                 | 3 p.m. ET | Maternal Sepsis                            |  |  |  |  |  |  |
| 29-Sept.                                 | 3 p.m. ET | Sepsis Fluid Management Advances           |  |  |  |  |  |  |
| 6-Oct.                                   | 3 p.m. ET | Personal Hygiene and Sepsis Prevention     |  |  |  |  |  |  |

Click on link to register for each webinar



IHAconnect.org/Quality-Patient-Safety

3

# Sepsis Webinar Details



2022 IHA Clinical Webinar Series - 3 - 4 p.m. ET

Sepsis: Back & to the Future (Click link to register)

Sept. 1: Indiana Sepsis 2022: Current State of the State and New Resources,

Rebecca Hancock PhD, RN, CNS, Patient Quality & Safety Advisor, IHA

Chris Newkirk, BSN, RN, CCM, Clinical Quality Advisor, Columbus Regional Health

Sept. 8: Sepsis Back to Basics: Pathophysiology and Bundle Compliance,

Tom Ahrens, PhD, RN, FAAN

Sept. 15: Sepsis Future: Advances in Sepsis Diagnostics,

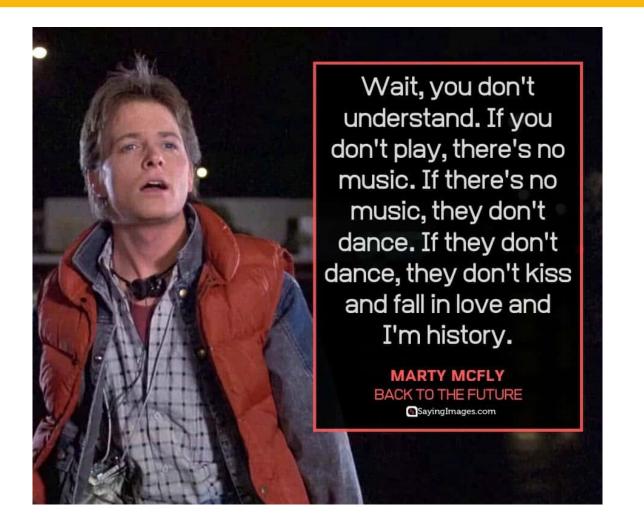
Dr. Sandy Estrada, Pharm.D., Clinical Consultant

Sept. 22: Sepsis Future: Focus on Maternal Sepsis,

Brittany Waggoner, Patient Safety & Quality Advisor, RN, MSN, CNS, IHA

Sept. 29: Sepsis Future: Fluid Management

Danielle Herr BSN, CCRN, Therapy Development Specialist


Vince Holly, MSN, RN, CCNS, ACNS-BC, CCRN, FCNS, Indiana University Health-Bloomington

Oct. 6: Back to the Basics with Personal Hygiene for Infection Prevention

Rebecca Hancock, Patient Quality & Safety Advisor, IHA

Annette Handy, Clinical Director, Patient Safety Center, IHA





If we don't improve, we won't reduce mortality. If we don't improve sepsis care sequences....?





 Describe challenges in sepsis fluid resuscitation
 Describe research in fluid resuscitation responsiveness and assessments (FRESH, Kansas City studies)
 Apply fluid volume resuscitation management device to sepsis patient scenario

# **Risk Factors for Sepsis**



- Recent UTI, pneumonia or operative event (lines, drains)
- Diabetes
- Immunosuppressive therapy
- Elective surgery
- Chronic renal failure
- Alcohol abuse
- Splenectomy
- Sickle Cell
- Non-modifiable factors: age (very old or young), gender (M>F), race (B>W)

(Kumar et al, 2006; Torres et al, 2004; Englert & Ross, 2015)

Hospitalized patients

at risk?

Social Determinants of

Health deficits?

IHAconnect.org/Quality-Patient-Safety

# Sepsis Signs & Symptoms (Clinical)



Screening with Al

Systemic Inflammatory Response Syndrome (SIRS) Criteria:

- Suspected new or worsening infection with 2 or more:
  - 1. Fever > 38.3 ° C / 100.4 ° F or less than 36 ° F / 96.8 ° F (NSAIDS / Tylenol can mask)
  - 2. HR > 90 bpm (beta blockers can mask)
  - 3. RR >20 bpm
  - 4. WBC >12,000 or <4,000 of >10% bands

#### Other:

- 1. Altered mental status, falls
- 2. Severe Sepsis/Shock: SBP <90 mm Hg or SBP decrease >40 mm HG in adults
- 3. Delirium, anorexia, malaise, urinary incontinence, weakness, functional decline, withdrawal, agitation (Girard et al., 2015; Nasa et al., 2012; Englert & Ross, 2015)

Symptoms atypical in very old and very young

# Sepsis Signs & Symptoms



### SYMPTOMS OF SEPSIS

S Shivering, fever, or very cold
E Extreme pain or general discomfort ("worst ever")
P Pale or discolored skin
S Sleepy, difficult to rouse, confused
"I feel like I might die"
S Short of breath



Watch for a combination of these symptoms. If you suspect sepsis, see a doctor urgently, CALL 911 or go to a hospital and say, "I AM CONCERNED ABOUT SEPSIS."

SEPSIS.ORG



terminology

#### Systemic Inflammatory Response Syndrome (SIRS)

- Suspected or worsened infection with:
  - Low blood pressure <90 SBP</li>
  - Fever (consider recent anti-pyretics-Tylenol/Advil)
  - Lactate >2; WBC >
  - Hypothermia
  - Heart rate over 90 bpm (consider beta blockers that lower HR)
  - Respiratory rate over 20 bpm
  - Significant edema
  - Hyperglycemia in absence of diabetes
  - Altered mental status?

(Dellinger et al., 2013)



# CMS Sepsis Bundle



### Numerator

**Type of Measure: Process** 

10

Improvement Noted As: An increase in the rate Numerator Statement: Patients who received ALL of the following: Within three hours of presentation of severe sepsis:

- Initial lactate level measurement
- Broad spectrum or other antibiotics administered
- Blood cultures drawn prior to antibiotics

AND received within six hours of presentation of severe sepsis. ONLY if the initial lactate is elevated:

Repeat lactate level measurement

AND within three hours of initial hypotension:

• Resuscitation with 30 mL/kg crystalloid fluids

OR within three hours of septic shock:

• Resuscitation with 30 mL/kg crystalloid fluids

AND within six hours of septic shock presentation, ONLY if hypotension persists after fluid administration:

Vasopressors are administered

AND within six hours of septic shock presentation, if hypotension persists after fluid administration or initial lactate >= 4 mmol/L:

• Repeat volume status and tissue perfusion assessment is performed

CMS IPQR Sepsis Specs Specifications Manual for National Hospital Inpatient **Quality Measures** 

#### Discharges 01-01-22 (1Q22) through 06-30-22 (2Q22Version 5.10

### Denominator/Exclusions

**Denominator Statement:** Inpatients age 18 and over with an ICD-10-CM Principal or Other Diagnosis Code of Sepsis, Severe Sepsis, or Septic Shock and not equal to U07.1 (COVID-19).

Included Populations: Discharges age 18 and over with an ICD-10-CM Principal or Other Diagnosis Code of Sepsis, Severe Sepsis, or Septic Shock as defined in Appendix A, Table 4.01.

**Excluded Populations:** 

- Patients with an ICD-10-CM Principal or Other Diagnosis Code of U07.1 (COVID-19)
- Directive for Comfort Care or Palliative Care within six hours of presentation of severe sepsis
- Directive for Comfort Care or Palliative Care within six hours of presentation of septic shock
- Administrative contraindication to care within six hours of presentation of severe sepsis
- Administrative contraindication to care within six hours of presentation of septic shock
- Length of Stay >120 days
- Transfer in from another acute care facility
- Patients enrolled in a clinical trial for sepsis, severe sepsis or septic shock treatment or intervention
- Patients with severe sepsis who are discharged within six hours of presentation
- Patients with septic shock who are discharged within six hours of Presentation
- Patients receiving IV antibiotics for more than 24 hours prior to presentation of severe sepsis

IHAconnect.org/Quality-Patient-Safety

# Sepsis CMS Specification Changes starting 7/1/2021



### Fluids Exclusion

- Provider must specifically and accurately document end stage heart failure NYHA Class 3 or 4, or renal disease as noted in specs,
- Volume patient would have received, and
- Expected volume to infuse in place of 30 ml/kg of ideal body weight

Quality Net Inpatient Specs v. 5.1, Q3-Q4 2021

### Antibiotic Modification

 Broad spectrum or other antibiotic specifications criteria removed, but timeframe for administration remains with focus on timing of administration rather than antibiotic selection

> Sepsis CQI on Anthem QHIP Bonus Points; SCCM guideline updates 9/21

Aconnect.org/Quality-Patient-Safety

# CMS Fluid Specs 1/1/2022



- 1. Crystalloid fluid volumes ordered that are equivalent to 30 mL/kg or a lesser volume with a reason for the lesser volume specifically documented by the physician/APN/PA are the target ordered volume.
- 2. A physician/APN/PA order for a volume of crystalloid fluids that is within 10% less than 30 mL/kg is acceptable for the target ordered volume. Documentation of a reason for a volume that is within 10% less than 30 mL/kg is not required.
- 3. There is a physician/APN/PA order for the lesser volume of crystalloid fluids as either a specific volume (e.g. 1500 mL) or a weight-based volume (e.g. 25 mL/kg).
- 4. The ordering physician/APN/PA documented within a single note in the medical record all of the following:
  - The volume of fluids to be administered as either a specific volume (e.g. 1500 mL) or a weight-based volume (e.g. 25 mL/kg) AND a reason for ordering a volume less than 30 mL/kg of crystalloid fluids.
  - Reasons include and are not limited to:
    - concern for fluid overload
    - heart failure
    - renal failure

12

- blood pressure responded to lesser volume
- a portion of the crystalloid fluid volume was administered as colloids (if a portion consisted of colloids, there must be an order and documentation that colloids were started or noted as given)

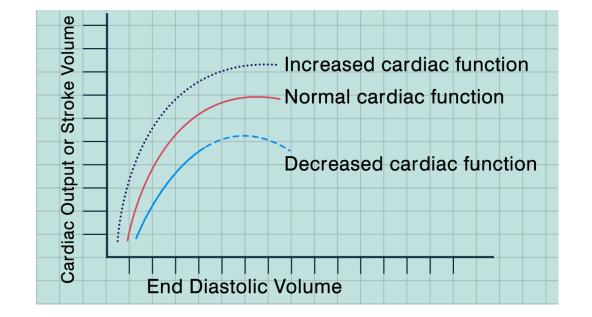
IHAconnect.org/Quality-Patient-Safety

# Sep-1 vs Sep-3 diagnostic criteria—CMS clearing mud!



<u>Hospital-Based Sepsis Care: The Evolving Definition of Sepsis</u> <u>and the Roles of the ED Medical Director and Quality Team in</u> <u>Sepsis Care (qualityreportingcenter.com)</u>, Nov 2021

# 2021 SCCM Sepsis Guidelines




| Quality of Evidence /<br>Strength of Recommendation |
|-----------------------------------------------------|
| Low/ Weak                                           |
| Very Low/Weak                                       |
| Low / Weak                                          |
| Moderate / Strong                                   |
| Low / Weak                                          |
|                                                     |

https://www.sccm.org/Clinical-Resources/Guidelines/Guidelines/Surviving-Sepsis-Guidelines- IHAconnect.org/Quality-Patient-Safety 2021#Recommendations

# Frank-Starling law





The Frank-Starling law mechanism can be defined as 'an intrinsic adaptive response which serves to adjust each ventricular output to its inflow by increasing the force of contraction of the myocardium proportionally to any increase in the length of the muscle fibers', i.e., increase in the volume of blood entering the heart stretches the walls of the ventricle, which causes the heart to contract with more force, like a stretched rubber band, increasing the volume of each stroke of the heart.

# **Guest Speakers**





Danielle Herr, RN, BSN Therapy Development Specialist at Baxter International Inc



Vince Holly, MSN, RN, CCNS, ACNS-BC, CCRN, FCNS, Clinical Nurse Specialist - Critical Care Indiana University Health-Bloomington

IHAconnect.org/Quality-Patient-Safety

# 100+ YEARS OF TECHNOLOGY: WILL MY PATIENT RESPOND TO IV FLUID?



|                   |                     | Chamber Size                       | Dynamic As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sessments                                                                                     |
|-------------------|---------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Pressure Base     | ed                  |                                    | Invasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Non-Invasive                                                                                  |
|                   |                     |                                    | SVV - Stroke Volume Variation<br>Add Add Add Add Add Add Add Add Add Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |
| 1950's<br>Central | 1970's<br>Pulmonary | 1980's<br>Echo-                    | 2000's<br>Stroke Volume Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TODAY<br>Δ Stroke Volume                                                                      |
|                   | 1950's              | 1950's 1970's<br>Central Pulmonary | Pressure BasedImage: Strain Strai | Pressure Based       Invasive         Image: Contral Pulmonary       Image: Contral Pulmonary |



**Respiratory Based** 

**Direct Fluid Challenge** 

## FLUID RESPONSIVENESS –

### **ONLY ~ 50%**

- Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids?
- Peter Bentzer, MD, PhD; Donald E. Griesdale, MD, MPH; John Boyd, MD; Kelly MacLean, MD; Demetrios Sirounis, MD; Najib T. Ayas, MD, MPH

#### • META-ANALYSIS

- 50 ICU studies
- 2260 patients
- **50%** Fluid Responsive (95% CI, 42% to 56%)
- SV change performed best (Sens 88%/Spec 92%)





| iors              | Evidence<br>Level                                    | Sample<br>size      |                           | oonders<br>%)                         | Ven              | tilation       | Tidal<br>volume<br>(ml/kg) |       | erence<br>idard |        | off for<br>onse            |       | me and<br>of fluid | Test                |     | lethod to<br>easure test |           |                      |                         |                 |        |
|-------------------|------------------------------------------------------|---------------------|---------------------------|---------------------------------------|------------------|----------------|----------------------------|-------|-----------------|--------|----------------------------|-------|--------------------|---------------------|-----|--------------------------|-----------|----------------------|-------------------------|-----------------|--------|
| et,               | 3                                                    | 38                  |                           | 53                                    | Con              | trolled        | 8                          | ED    |                 | 15 %   |                            | 500 c | c NS               | ABF                 | ED  | )                        |           |                      |                         |                 |        |
| veira             | 3                                                    | 37                  |                           | 46                                    | Con              | trolled        | 6.5                        | PAC   | 1               | 15 %   |                            | 1000  | сс                 | PPV                 | Ar  | t. Line                  |           |                      | •                       |                 |        |
| 1,<br>33          | Authors                                              | Evider<br>Level     | nce                       | Sample<br>size                        |                  | ponders<br>(%) | Ventilat                   |       | Tidal<br>volume |        | erence<br>ndard            |       | -off for<br>sponse | Volume<br>type of f |     | Test                     |           | thod to<br>sure test |                         |                 |        |
| 34                |                                                      |                     |                           |                                       |                  |                |                            |       | (ml/kg)         |        |                            |       | -                  |                     |     |                          |           |                      |                         |                 |        |
| <b>IS</b> ,<br>35 | Perner,<br>2006 <sup>11</sup>                        | 2                   |                           | 30                                    |                  | 47             | Spontane<br>s              | eou - | -               | TPT    | [                          | 10 %  | ó                  | 500 cc E            | Dex | SVV                      | TPT       |                      |                         |                 |        |
| el,<br>86         | Moretti,<br>2010 <sup>12</sup>                       | 2                   |                           | 29                                    |                  | 59             | Controll                   |       | 8               | TPT    |                            | 15 %  |                    | 7 cc/kg             |     |                          |           | asound               |                         |                 |        |
| <b>K</b> ,<br>37  | 2010 <sup>12</sup><br>Charron,<br>2006 <sup>13</sup> | Au                  | ithors                    | Evide<br>Level                        | nce              | Sample<br>size | Respon<br>(%)              |       | Ventila         | tion   | Tidal<br>volume<br>(ml/kg) | st    | eference<br>andard | Cut-off<br>respo    |     | Volume a<br>type of flu  |           | Test                 | Method to<br>measure te |                 |        |
| net,<br>38        | Lakhal,<br>2010 <sup>14</sup>                        | _                   | oerszty                   | 3                                     |                  | 48             | 40                         |       | Mixed           |        | -                          | TF    | Т                  | 15 %                |     | 500 cc NS                |           |                      | TPT                     |                 |        |
| ar.               | MacDonal<br>d, 2015 <sup>15</sup>                    |                     | gege,<br>3 <sup>22</sup>  |                                       |                  |                |                            |       |                 |        |                            |       |                    |                     |     |                          | 1         | CI                   |                         |                 |        |
| er,<br>39         | Monnet,<br>2006 <sup>16</sup>                        | Ang                 | gappan                    | 3                                     |                  | 45             | 64                         |       | Control         | led    | 8                          | PC    | CA                 | 15 %                |     | 500 cc HI                | ES        | SVV                  | Art. Line               |                 |        |
| oni,<br>10        | Lakhal,                                              |                     | 15 <sup>23</sup><br>rbonn | Auth                                  | ors              | Evidenc        | e Samj                     | ole F | Responde        | rs     | Ventilati                  | on    | Tidal              | Referen             | ce  | Cut-off for              | Vo        | olume and            | Test                    | Metho           | od to  |
| 41                | 2011 <sup>17</sup><br>deBacker,                      | eau,                |                           |                                       |                  | Level          | size                       | 2     | (%)             |        |                            |       | volume<br>(ml/kg)  | standar             | rd  | response                 | typ       | pe of fluid          |                         | measur          | e test |
|                   | 2005 <sup>18</sup>                                   | Khv<br>mit.         | vanni                     | Liu, 20                               | )16 <sup>1</sup> | 2              | 96                         |       | 54              | (      | Controlle                  | ed î  | 7.1                | TPT                 |     | 15 %                     | 500       | 0 cc NS              | PPV                     | Art. Liı        | ne     |
|                   | Muller,<br>2010 <sup>19</sup>                        | 2012<br>Mic<br>2000 | hard.                     | Osmar<br>2007 <sup>2</sup>            |                  | 2              | 96                         |       | 43              |        | Not<br>reported            | -     | -                  | PAC                 |     | 15 %                     | 500       | 0 cc HES             | CVP                     | CVC             |        |
|                   | Monnet,                                              | Mor<br>2013         | nnet,<br>3 <sup>27</sup>  | Thiel, 2009 <sup>3</sup>              |                  | 2              | 89                         |       | 46              | ľ      | Mixed                      | -     | -                  | TTE                 |     | 15 %                     | LR        | R, NS or             | PLR on<br>SV            | TTE             |        |
|                   | 2012 a <sup>20</sup>                                 | Mul<br>2012<br>Feis | 2 <sup>28</sup>           | Valle, 2009 <sup>4</sup>              |                  | 2              | 84                         |       | 46              | (      | Controlle                  | ed î  | 7.8                | TPT                 |     | 15 %                     | HE<br>6 c | 2S<br>c/kg HES       | PPV                     | Art. Liı        | ne     |
|                   | Guarracin<br>o, 2014 <sup>21</sup>                   | 2004<br>Mor         | 4 <sup>29</sup><br>nnet.  | Vieilla<br>Baron,                     |                  | 2              | 66                         |       | 30              | (      | Controlle                  | ed 8  | 8.2                | TEE                 |     | 11 %                     | 10<br>HE  | cc/kg<br>ES          | PPV                     | Art. Liı        | ne     |
|                   |                                                      | 2012<br>Mor         | 2 b <sup>30</sup>         | 2004 <sup>5</sup><br>Airape<br>, 2015 | etian            | 2              | 59                         |       | 49              | 5      | Spontane                   | ou -  | -                  | TTE                 |     | 10 %                     | 500       | 0 cc NS              | IVC,PL<br>R on          | TTE             |        |
|                   |                                                      | Gard<br>2009        | cia,                      | Monge                                 |                  | 2              | 37                         |       | 57              | -      | Controlle                  | ed 8  | 8.1                | ED                  |     | 15 %                     | 500       | 0 cc HES             | CO<br>PLR on            | Art. Lii        | ne     |
|                   |                                                      | L                   |                           | Garcia<br>2012 <sup>7</sup>           | ι,               | 2              | 35                         |       | 40              |        | Tont1                      |       | D A                | TTE                 |     | 15.0/                    | 20        |                      | CO, PP<br>SVV           | ED              |        |
|                   |                                                      |                     |                           | Biais,<br>2008 <sup>8</sup>           |                  |                |                            |       | 49              |        | Controlle                  |       | 8.4                |                     |     | 15 %                     | 4%        | cc x BMI<br>Albumin  |                         | Art. Lii        | 10     |
|                   |                                                      |                     |                           | Muller<br>2008 <sup>9</sup>           | ſ,               | 2              | 35                         |       | 51              | 0      | Controlle                  | ed (  | 6.8                | TPT                 |     | 15 %                     | HE        |                      | CVP                     | CVC             |        |
|                   |                                                      |                     |                           | Preau, 2010 <sup>10</sup>             | )                | 2              | 34                         |       | 41              | s<br>S | Spontane                   | ou -  | -                  | TTE                 |     | 15 %                     | 500       | 0 cc HES             | PLR on<br>SV, PP        | Art. Liı<br>TTE | ne     |
|                   |                                                      |                     |                           |                                       |                  |                |                            |       |                 |        |                            |       |                    |                     |     |                          |           |                      |                         |                 |        |

Bentzer P et al. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids. JAMA 2016; 316(12), 1298.

Autho

Monne 2005<sup>32</sup>

deOlive Costa, 2012<sup>33</sup> Biais, 2012<sup>34</sup>

Freitas 2013<sup>35</sup> Maizel 2007<sup>36</sup> Marik, 2013<sup>37</sup>

Monne

 $2009^{38}$ 

Muller

2009<sup>39</sup> Ceccor 2012<sup>40</sup>

Biais, 2009<sup>41</sup>

### Predicting Preload Responsiveness Accurately



#### **Optimization of Preload in Severe Sepsis and**

#### Septic Shock

Adil Shujaat and Abubakr A. Bajwa

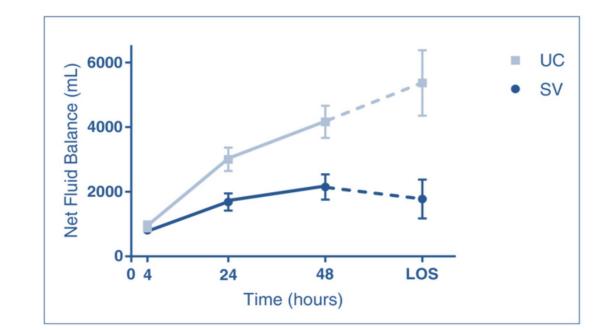

| Parameter | Technology                                             | AUC with 95% CI  |  |  |
|-----------|--------------------------------------------------------|------------------|--|--|
| PLR*      | Various methods of CO measurement                      | 0.95 (0.92-0.97) |  |  |
| PPV       | Arterial BP waveform                                   | 0.94 (0.93-0.95) |  |  |
| SVV       | Arterial BP waveform analysis by proprietary algorithm | 0.84 (0.78-0.88) |  |  |
| LVEDAI    | Echocardiography                                       | 0.64 (0.53-0.74) |  |  |
| GEDV      | Thermodilution                                         | 0.56 (0.37-0.67) |  |  |
| CVP       | Central venous catheter                                | 0.55 (0.48-0.62) |  |  |

TABLE 1: Accuracy of various parameters used to predict preload responsiveness [7, 10].

PLR: passive leg raising, PPV: pulse pressure variation, SVV: stroke volume variation, LVEDAI: left ventricular end-diastolic area index, GEDV: global enddiastolic volume, CVP: central venous pressure, AUC: area under receiver operating characteristics curve.

# KU – DYNAMIC MEASURES IN SEPSIS

- Stroke volume guided resuscitation in severe sepsis and septic shock may improve outcomes
- Heath E. Latham, Charles D. Bengtson, Lewis Satterwhite, Mindy Stites, Dipti P. Subramaniam, G. John Chen, Steven Q. Simpson
- Retrospective, matched, single-center study of nearly 200 patients:
- SV guided fluid in severe sepsis and septic shock
- 100 SV vs. 91 Usual Care
- Retrospective cohort study



- *Reduced Fluid Balance* 1.77*L* vs. 5.36*L* (*p* = 0.022)
- *Reduced ICU LOS 2.89 days (p = 0.03)*
- *Less vasopressor 32.8 hours (p* = 0.001)
- Less mechanical ventilation RR .51 (p = 0.0001)
- Less dialysis 6.25% vs. 19.5% RR .32 (p = 0.01)
- 53% Fluid Responsive

# FRESH STUDY

Published in CHEST journal October 2020 • Multi-Center Randomized Clinical Trial

• 13 hospitals participated

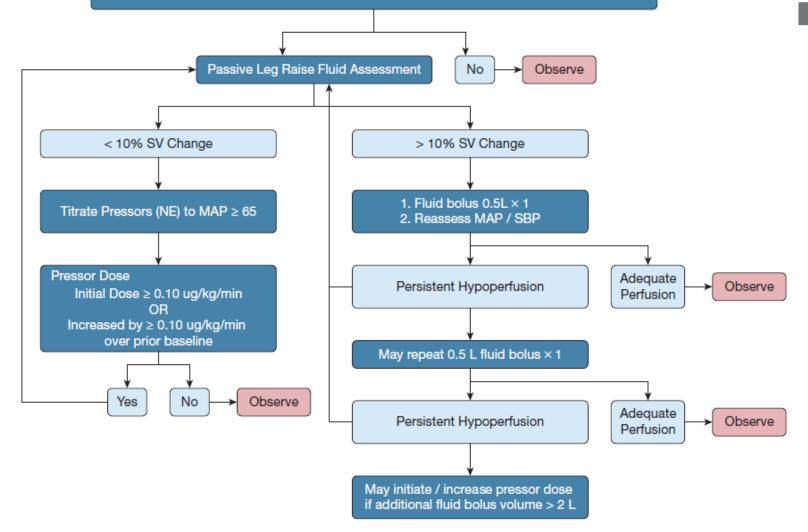
• Enrolled patients from ER to ICU

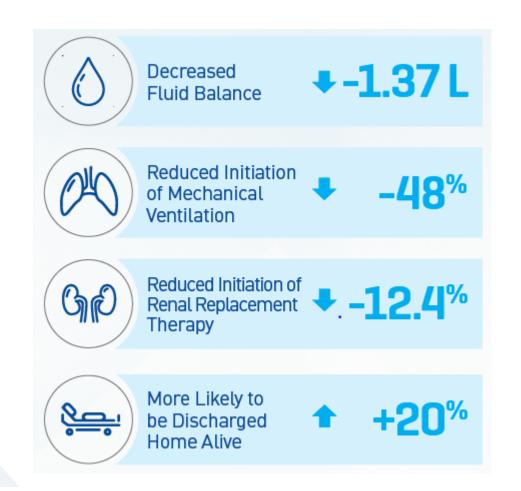
• Used dynamic assessments to determine need for fluids vs pressors Clinical Decision is made to treat the patient with either fluid and/or vasoactive medications. This may be due:

- MAP < 65, SBP < 90, or BP is rapidly trending lower
- low urine output
- any other clinical indication to administer/after fluid bolus or pressors

Vasoactive medication may be de-escalated at the clinician's discretion but re-escalation should trigger this PLR algorithm







Figure 1 – Flow chart model of the algorithm used to guide treatment in the Fluid Responsiveness Evaluation in Sepsis-associated Hypotension study. q/Quality-Patient-Safety MAP = mean arterial pressure; NE = norepinephrine; PLR = passive leg raise; SBP = systolic BP; SV = stroke volume.

Fluid Management...Does it Matter?

# FRESH SEPSIS TRIAL DEMONSTRATES IMPROVED PATIENT OUTCOMES

- When Using Dynamic Measures to Guide Fluid Decisions<sup>1</sup>
- 13 hospitals in the United States and the United Kingdom
- 83 SV vs. 41 Usual Care
- 523 PLR assessments
- Investigators were asked to perform a PLR any time they were considering fluid administration .
- Primary clinical outcome was fluid balance at 72hours or ICU discharge, whichever occurred

FRESH is the first prospective, multi-center randomized clinical trial demonstrating improved outcomes when a dynamic assessment of fluid responsiveness (PLR) is used to guide treatment in severe sepsis and septic shock patients



### DYNAMIC MEASURES TO GUIDE FLUID IN SEPTIC SHOCK

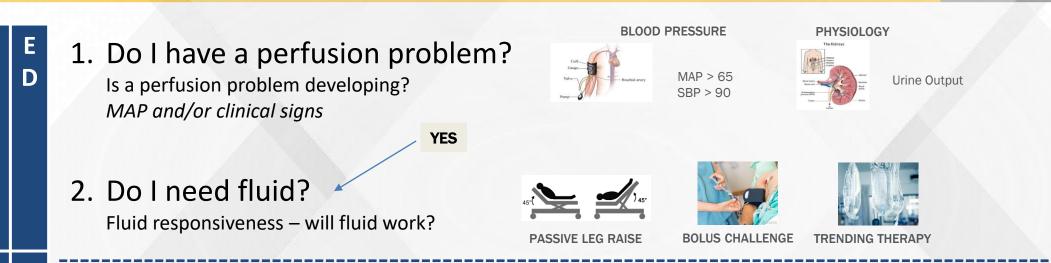
| Variable                                      | SV Guided <sup>1</sup> | Control <sup>1</sup> | Δ/p¹                                                                   | Cost Assumptions*                                                 | Cost<br>Avoidance* |
|-----------------------------------------------|------------------------|----------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|
| Fluid Balance<br>(Liters)                     | 1.77L ± 0.60           | 5.36L ± 1.01         | 3.59L<br>p=0.002                                                       |                                                                   |                    |
| ICU LOS<br>(Days)                             | 5.98 ± 0.68            | 8.87 ± 1.18          | 2.89 days<br>p=0.03                                                    | \$US 4004/ICU day <sup>2</sup> \$US<br>906/floor day <sup>3</sup> | \$8,953            |
| Pressor Use<br>(Hours)                        | 32.08 ± 5.22           | 64.86 ± 8.39         | 32.78 hours<br>p=0.001                                                 |                                                                   |                    |
| Mechanical<br>Ventilation Risk                | 29%                    | 57%                  | RR=0.51<br>p = 0.001                                                   | \$US 1522/day⁴<br>5.1 days <sup>3</sup>                           | \$1,940            |
| Acute Dialysis<br>Therapy Initiated6.25%19.5% |                        | 13.25%<br>P = 0.01   | \$27,182 x<br>(12.73 cases avoided/<br>96 total patients) <sup>3</sup> | \$3,605                                                           |                    |

#### **Estimated Savings** *Per Treated Patient*

\$14,498

COST ASSUMPTIONS ICU Length of Stay (LOS): 2.89 days x (\$4,004 [Avg ICU Day] – \$906 [Avg Floor Day]) = \$8,953 Mechanical Ventilation (MV): \$1,522 x 5.1 days x .25 = \$1,940 Assumes: 1. Incremental cost of MV \$1,522/day. 2. Average duration of MV in septic shock 5.1 days. 3. Assumes an absolute 25% reduction of patients receiving mechanical ventilation. Acute Dialysis Therapy: \$27,182 (avg. dialysis-related hospital costs) x (12.73 cases avoided/96 total patients) = \$3,605

Latham H, et al. Stroke volume guided resuscitation in severe sepsis and septic shock improves outcomes. J Crit Care 2017; 28:42-46


2. Huynh T, et al. The frequency and cost of treatment perceived to be futile in critical care. JAMA Internal Med. 2013; 173.

3. Premier Data Set, 2013. Premier, Inc.

4. Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit Care Med. 2005; 33(6):1266-1271.

# EASILY INTEGRATES INTO YOUR WORKFLOW Safety Center





3. Do I need pressors? Vascular resistance – TPRI /SVRI

0

0

R

С

IJ



#### 4. Do I need inotropes?

Low cardiac output after preload & vascular tone optimization Consider Echo/cardiac w/u



**AFTERLOAD** 

### Case Study #1

**Emergency Dept** 

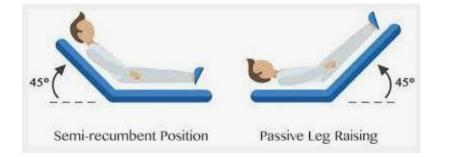




- 54-year-old male C/O SOB x 3 days
- Productive cough
- PMH: Hyperlipidemia, GERD
- Chest Xray
- Sputum and Blood cultures
- Abx for Community Acquired
   Pneumonia
- Labs ordered

Case Study #1

Emergency Dept.


- WBC: 17.5 k
- HR: 98 bpm
- RR: 25 bpm
- Temp: 37.5<sup>0</sup> C
- *BP: 82/33 mmHg MAP 49 mmHg*
- Lactate: 5.6 mmol/L
- SpO2: 92% on High Flow NC



### • Fluid Bolus???

Case #1

Transfer to ICU



- Received 30ml/kg (2,600 ml) bolus
- BP 87/38mmHg MAP 54 mmHg
- Started Norepinephrine 5 mCg/min
- BP 96/50mmHg MAP 65mmHg
- Reevaluate
  - Lactate
  - Dynamic fluid responsiveness assessment using PLR



Case Study #2

**Emergency Dept** 

- 72-year-old female
- UTI, acute mental status change, poor PO intake
- Chronic Kidney Disease

• CHF



Case #2

**Emergency Dept** 

- WBC: 13.2 k
- BP: 80/54 mmHg MAP 63 mmHg
- HR: 103 bpm
- *Temp: 38.5° C*
- BUN: 85mg/dL
- Cr: 1.76 mg/dL
- Lactate: 4.2 mmol/L



## • Fluid Bolus??

### Case Study #3

#### Inpatient Sepsis Screening

| None None                                                                   | 🗖 Endocarditis 🔄 🗌                                                                                                  | Meningitis 📃                                  | Soft Tissue Injury, Skin     |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|
| Abdomen                                                                     |                                                                                                                     |                                               | Urinary Tract Infection      |
| Anti-infective therapy                                                      | Invasive procedure <30 days                                                                                         | Positive culture                              | Other (See Comment)          |
|                                                                             |                                                                                                                     |                                               |                              |
| 2. Check all that apply:                                                    | SIRS criteria met if 2 or more re                                                                                   | sponses checked below                         |                              |
| None None                                                                   | Temp < 36 DegC or > 38 DegC                                                                                         | RR > 20 per minute                            |                              |
| ✓ WBC <4,000/uL or >12,00                                                   | )0/uL 🗹 HR > 90 bpm                                                                                                 |                                               |                              |
|                                                                             |                                                                                                                     |                                               |                              |
|                                                                             |                                                                                                                     |                                               |                              |
|                                                                             |                                                                                                                     |                                               |                              |
|                                                                             |                                                                                                                     |                                               |                              |
| If a response other th                                                      | an "None" is selected for #1 and \$                                                                                 | SIRS criteria met for #2 -                    | Order a Lactate Venous PL ON |
|                                                                             | an "None" is selected for #1 and \$                                                                                 |                                               | Order a Lactate Venous PL QN |
|                                                                             | an "None" is selected for #1 and 9<br>10DIFY PowerForm and continue 1                                               |                                               | Order a Lactate Venous PL QN |
|                                                                             |                                                                                                                     |                                               | Order a Lactate Venous PL QN |
| When lab is resulted, M                                                     | MODIFY PowerForm and continue                                                                                       |                                               | Order a Lactate Venous PL QN |
|                                                                             | MODIFY PowerForm and continue                                                                                       |                                               | Order a Lactate Venous PL QN |
| When lab is resulted, M<br>Result: Lactate Venous                           | MODIFY PowerForm and continue of a s PL QN 2.5 mmol/L                                                               | with #3 and NEXT STEP                         | Order a Lactate Venous PL QN |
| When lab is resulted, M<br>Result: Lactate Venous                           | MODIFY PowerForm and continue                                                                                       | with #3 and NEXT STEP                         | Order a Lactate Venous PL QN |
| When lab is resulted, M<br>Result: Lactate Venous                           | MODIFY PowerForm and continue of a s PL QN 2.5 mmol/L                                                               | with #3 and NEXT STEP                         |                              |
| When lab is resulted, M<br>Result: Lactate Venous<br>3. Does patient meet a | MODIFY PowerForm and continue of a s PL QN 2.5 mmol/L                                                               | with #3 and NEXT STEP<br>ON?                  | ımol/L ▼ PTT >60 sec         |
| When lab is resulted, M<br>Result: Lactate Venous<br>3. Does patient meet a | AODIFY PowerForm and continue of<br>s PL QN 2.5 mmol/L<br>any criteria for ORGAN DYSFUNCTIO<br>Pa02/Fi02 ratio <300 | with #3 and NEXT STEP ON? Lactate Venous >2 m | ımol/L ▼ PTT >60 sec         |

SIRS Alert and Sepsis Screen



Case Study #4

Inpatient Rapid Response Call

- 18-year-old male
- Admitted to Med/Surg post operative appendectomy
- *BP 88/42mmHg MAP 57mmHg*
- PMH: Nothing significant

• Bolus v. tx ICU?





Inpatient Rapid Response Call

#### **Dynamic Fluid Responsiveness Assessment Script**

#### SVI increase of 10% or more

Dr. \_\_\_\_\_, Pt \_\_\_\_\_ in room \_\_\_\_\_\_ became hypotensive. I did a fluid responsiveness assessment using the \*\*\*\*\*\* Monitor. The Stroke Volume Index increased by \_\_\_\_%. This increase indicates the patient will respond to a fluid bolus. Would you like 500ml or 1000ml and what fluid would you like me to give?

#### SVI increase of less than 10%

Dr. \_\_\_\_\_, Pt \_\_\_\_\_ in room \_\_\_\_\_\_ became hypotensive. I did a fluid responsiveness assessment using the \*\*\*\*\*\* Monitor. The Stroke Volume Index increased by only \_\_\_\_%. An increase less than 10% indicates the patient will NOT respond to a fluid bolus. Would you like start a vasopressor?



# Thank you for your attention





Danielle Herr danielle herr@baxter.com

Vince Holly VHolly@iuhealth.org

Rebecca Hancock rhancock@ihaconnect.org

# Sepsis: Back and to the Future



| IHA 2022 Sepsis Awareness Month Webinars |           |                                            |  |  |  |  |  |  |
|------------------------------------------|-----------|--------------------------------------------|--|--|--|--|--|--|
| 1-Sept.                                  | 3 p.m. ET | Indiana Sepsis State of the State          |  |  |  |  |  |  |
| 8-Sept.                                  | 3 p.m. ET | Sepsis Pathophysiology & Bundle Compliance |  |  |  |  |  |  |
| 15-Sept.                                 | 3 p.m. ET | Sepsis Diagnostic Advances                 |  |  |  |  |  |  |
| 22-Sept.                                 | 3 p.m. ET | Maternal Sepsis                            |  |  |  |  |  |  |
| 29-Sept.                                 | 3 p.m. ET | Sepsis Fluid Management Advances           |  |  |  |  |  |  |
| 6-Oct.                                   | 3 p.m. ET | Personal Hygiene and Sepsis Prevention     |  |  |  |  |  |  |

Click on link to register for each webinar



IHAconnect.org/Quality-Patient-Safety

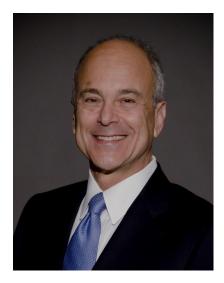


#### Nov 1-2 Nov 1-2

# Nov. 1 – 2 The Westin Indianapolis

### Learn more and register on our website:




# **Annual Meeting Keynote Speakers**





Sean Astin Actor & Director

Mental Health



### Dr. Mark Chassin

President Emeritus, The Joint Commission

### Quality & Patient Safety



**Steve Cadigan** Former VP of Talent, LinkedIn

### Workforce & Culture

# **Annual Meeting Keynote Speakers**





Donna Brazile

Veteran Democratic

Political Strategist



Michael Steele

Former RNC Chair



### John Riggi

National Advisor for Cybersecurity and Risk, AHA



Alan Beaulieu President ITR Economics

Political Point/Counterpoint

### Cybersecurity

Health Care Economic Forecast

# Quality and Patient Safety Team





Karin Kennedy Vice President, Quality & Patient Safety 317-423-7737 kkennedy@IHAconnect.org



Laurie Gerdt Quality & Patient Safety Advisor 317-423-7728 Igerdt@IHAconnect.org

34



Annette Handy Clinical Director, Quality & Patient Safety 317-423-7795 ahandy@IHAconnect.org



Brittany Waggoner Maternal & Infant Quality Improvement Advisor 317-488-1031 bwaggoner@IHAconnect.org



Becky Hancock Quality & Patient Safety Advisor 317-423-7799 rhancock@IHAconnect.org



Casey Hutchens Patient Safety Project Coordinator 317-974-1457 chutchens@IHAconnect.org



Madeline Wilson Quality & Patient Safety Advisor 317-974-1407 mwilson@IHAconnect.org



Becky Royer Consultant 812-249-2341 broyer@ihaconnect.org